Deconfined Criticality Flow in the Heisenberg Model

with Ring-exchange Interactions

Kun Chen
Hefei National Laboratory for Physical Sciences at Microscale
and Department of Modern Physics
University of Science and Technology of China

We perform large scale Monte Carlo simulations to study critical flows of 2D spin-1/2 J-Q model and 3D SU(2) symmetric discrete NCCPS1 model, a.k.a. deconfined-critical-point (DCP) action. The flows of the J-Q model and the DCP action collapse in a significantly large region of system sizes (up to L\sim 60-803), implying that the DCP theory (in general) and the discrete NCCPS1 model (in particular) correctly capture mesoscopic physics of the competition between the antiferromagnetic and valence-bond orders in quantum spin systems. At larger sizes we observe significant deviations between the two flows which both demonstrate strong violations of scale invariance. Possible scenarios are outlined.