Incompressible Quantum Glass state of Bosons

Wenan Guo (Beijing Normal University)

August, 2012
in Collaboration with

Anders W. Sandvik (Boston University)

YanCheng Wang (Beijing Normal University)
Introduction

QMC simulations of incompressible QG in 2D

Theory: a percolation scenario

Compressible and incompressible QG

Summary and discussions
Introduction

QMC simulations of incompressible QG in 2D

Theory: a percolation scenario

Compressible and incompressible QG

Summary and discussions
Interacting lattice bosons: clean system

\[H = -t \sum_{\langle ij \rangle} (b_i^+ b_j + b_j^+ b_i) + \frac{U}{2} \sum_{i=1}^{N} n_i(n_i - 1) - \mu \sum_{i=1}^{N} n_i, \]

Two ways from MI to SF

Two ground states SF and MI

- MI: integer filling, insulating, gapped
- SF: any filling fraction, gapless
Interacting lattice bosons: site-disorder present

Fascinating interplay between disorder, interactions and SF

\[H = -t \sum_{\langle ij \rangle} (b_i^+ b_j + b_j^+ b_i) + \frac{U}{2} \sum_{i=1}^{N} n_i (n_i - 1) - \sum_{i=1}^{N} \mu_i n_i, \]

- **SF**: any filling fraction, gapless
- **MI**: integer filling, insulating, gapped
- **Quantum Glass**: insulating but *Gapless; believed*: always compressible (BG) in 2D
Previous studies of the site-disordered BH model

$T = 0$ phase diagram: QG state always intervenes SF and MI?

Söyler '11; Prokof'ev, '04; Pollet, '09; Herbut, '97; '98; Weichman, '96, '08; Svistunov, '96;

Singh; '92; Pazmandi; '98; Pai, '96;

Scalettar, '91; Krauth, '91; Kisker; '97; Sen, '01; Lee, '01; Wu, '08; Bissbort, '09
Recent progress

QG is a Griffiths phase in which rare large regions of phase A inside phase B lead to singularities.

- $\Lambda > \Delta_M/2$, arbitrarily large regions of SF inside the MI.
- $\Lambda < \Lambda_c$, SF puddles NOT percolating, insulating.
- Fundamentally different from the MI: gapless due to arbitrarily large SF region

Pollet et al, PRL, 2009
Recent progress

Phase diagram

\[\mu/U \text{ vs. } t/U \text{ for given } \Lambda \]

\[\Lambda \text{ vs. } U/t \text{ for } \rho = 1. \]

\[\Lambda > \Delta_M/2, \text{ arbitrarily large regions of SF inside the MI.} \]

\[\Lambda < \Lambda_c, \text{ SF puddles NOT percolating, insulating.} \]

\[\text{Fundamentally different from the MI: gapless due to arbitrarily large SF region} \]

Pollet et al, PRL, 2009

MI-QG boundary can NOT be extracted basing on QMC

A theoretical curve
Introduction

QMC simulations of incompressible QG in 2D

Theory: a percolation scenario

Compressible and incompressible QG

Summary and discussions
Our work: the temperature behavior of κ

- We find κ in certain region of QG:

$$\kappa \sim \exp(-b/T^\alpha), \quad \alpha < 1$$

$\kappa \to 0$ when $T \to 0 \Rightarrow$ Mott Glass

MI: the above form with $\alpha = 1$ and $b = \Delta$

In contrast to the commonly accepted theory of site-disordered bosons

Gapless does not necessarily imply a compressible state

You can add or remove a particle with infinitesimal cost, but the total amount of the cost can be zero comparing to system size N

- such MG only found in 1D system with explicit P-H symmetry, e.g., hopping disorder
QMC simulations

- method: SSE QMC with directed-loop updates
- Adjust μ to ensure $\rho = \langle n \rangle / N = 1$
- Fix $U/t = 22$, 2D: QG for $4.2 < \Lambda < 7.8$
- Average over up to thousands of realizations
- For $\beta = t/T$ up to 8, eliminate finite-size effects by using L up to 32.

Söyler et al, 2011
QMC simulations: Low-\(T\) \(\kappa\) distribution

Difficulty: \(\kappa\) distribution develops a stretched tail
But it is not sufficiently fat to cause serious problems

\(L = 16, 1200\) realizations

\[\beta = 2\]

\[\beta = 4\]

\[\beta = 6\]
QMC simulations: $\kappa - T$ behavior

- κ in QG (MG) follows the exponential form
 $$\kappa \sim \exp(-b/T^\alpha)$$
 $\alpha \approx 0.77$ for $\Lambda = 6$
 $\alpha \approx 0.53$ for $\Lambda = 7$

- MI points ($\Lambda = 0$ and 3): agrees with the conventional $\alpha = 1$ exponential
 $$\kappa \propto e^{-\Delta/T}$$

- SF point ($\Lambda = 9$): $\kappa(T)$ converges rapidly to a non-zero value
Introduction

QMC simulations of incompressible QG in 2D

Theory: a percolation scenario

Compressible and incompressible QG

Summary and discussions
“QG should be a compressible BG” may fail, why?

The compressibility is normalized by the system volume!

\[
\kappa = \frac{\partial \rho}{\partial \mu} = \frac{1}{TN} \frac{\sum_n \int d\epsilon e^{-\epsilon/T} \rho_n(\epsilon)(n - \langle n \rangle)^2}{\sum_n \int d\epsilon e^{-\epsilon/T} \rho_n(\epsilon)}
\]

\(\rho_n(\epsilon)\): density of states with \(n\) bosons.
MI state of a clean system:

\[\Delta = \frac{\Delta M}{2} \]

to adding/removing a boson.

The added particle disperse as a free boson (large U),

\[\epsilon_q = \Delta + 4t - 2t[\cos(q_x) + \cos(q_y)] \]

At low $T \rightarrow$ flat density of states in a band of width W

\[\rho_{N\pm1}(\epsilon) = \begin{cases} \frac{N}{W} , & \epsilon \in [\Delta, \Delta + W] \\ 0 , & otherwise \end{cases} \]

Only consider the $n = N$ sector in the denominator,

\[\kappa = \frac{2}{TN} \int_{\Delta}^{\Delta+W} d\epsilon e^{-\epsilon/T} \frac{N}{W} (N\pm1-N)^2 = \frac{2}{W} e^{-\Delta/T} (1-e^{-W/T}) \approx \frac{2}{W} e^{-\Delta/T} \]
MI, Comparing with QMC simulations

\[U/t = 22, \rho = 1, \Delta_M \approx 8.34 \]

- **Clean system:** The pure exponential form agrees with QMC. We obtain \(\Delta \approx 4.2 \)

\[\kappa_{MI} \approx \frac{2}{W} e^{-\Delta/T} \]

\[\Lambda = 0 \quad \Lambda = 3 \quad \Lambda = 6 \quad \Lambda = 7 \quad \Lambda = 9 \]
MI, Comparing with QMC simulations

\[U/t = 22, \rho = 1, \Delta_M \approx 8.34 \]

- Clean system: The pure exponential form agrees with QMC. We obtain \(\Delta \approx 4.2 \)

- Weak disordered system (\(\Lambda > 0 \)), \(\Delta \rightarrow \) averaged gap

 The pure exponential form agrees with our QMC for \(\Lambda = 3 \).
QG state

Gapless: GS no longer dominates, can be ignored in the partition function, however

- Contribution to κ from the $N \pm 1$ sectors:

$$\kappa_1 \approx \frac{2}{TN} \left[\sum_{n=N\pm1} d\epsilon e^{-\epsilon/T} \rho_{n\pm1}(\epsilon)(\pm1)^2 \right] \propto \frac{1}{TN} \to 0$$
QG state

Gapless: GS no longer dominates, can be ignored in the partition function, however

- Contribution to κ from the $N \pm 1$ sectors:

 $$\kappa_1 \approx \frac{2}{TN} \sum_{n=N \pm 1} \int d\epsilon e^{-\epsilon/T} \rho_{n \pm 1}(\epsilon)(\pm 1)^2 \rho_n(\epsilon) \propto \frac{1}{TN} \to 0$$

- Contribution from other sectors?
 To get κ size independent, need enough low-energy states in sectors with $|n - N| \sim \sqrt{N}$

This is the case for SF state, but may not be the case for a QG due to **finite size gaps of SF domains in 2D**
Percolation scenario

Consider an ensemble of SF domains below the percolation threshold

- Finite-size (m) gap $\propto \frac{1}{m^a}$, a unknown exponent.
- Given $T = \frac{1}{m^a}$, all domains of sizes $s < m$ gapped, NO contribution to κ
- Only domains of sizes $s > m$ contribute to κ

Prob. of a site belong to an SF domain with $s > m$ is $\propto \exp(-bmc)$, c unknown exponent.

Thus

$$\kappa \propto \exp(-bT^{-c/a}) = \exp(-bT^{-\alpha})$$
Cross-over behavior

Always a contribution from the MI background,

\[\kappa_{MI} \propto \exp(-\Delta/T), \quad \Delta: \text{average gap} \]

total

\[\kappa \propto \kappa_{MI} + \exp(-bT^{-\alpha}) \]

\[\kappa_{MI} \text{ negligible at low } T \text{ when } \alpha < 1 \]
Cross-over behavior

Always a contribution from the MI background,

\[\kappa_{MI} \propto \exp\left(-\Delta/T\right), \quad \Delta: \text{average gap} \]

total

\[\kappa \propto \kappa_{MI} + \exp\left(-bT^{-\alpha}\right) \]

- \(\kappa_{MI} \) negligible at low \(T \) when \(\alpha < 1 \)
- Approaching the MG–MI transition from MG side, \(b \) diverges.
\(\kappa \) crosses over to \(\kappa_{MI} \), i.e., \(\alpha = 1 \)
Cross-over behavior

Always a contribution from the MI background,

\[\kappa_{MI} \propto \exp(-\Delta/T), \quad \Delta: \text{average gap} \]

\[\kappa \propto \kappa_{MI} + \exp(-bT^{-\alpha}) \]

- \(\kappa_{MI} \) negligible at low \(T \) when \(\alpha < 1 \)
- Approaching the MG–MI transition from MG side, \(b \) diverges.
 \(\kappa \) crosses over to \(\kappa_{MI} \), i.e., \(\alpha = 1 \)
- Approaching the MG-SF transition from MG, \(\alpha \rightarrow 0 \).
 \(\kappa \) evolves smoothly between the MG form and the constant \(\kappa \) at the transition

- Jump happens at \(T = 0 \)
outlines

Introduction

QMC simulations of incompressible QG in 2D

Theory: a percolation scenario

Compressible and incompressible QG

Summary and discussions
Compressible QG state (2D)

For very large Λ, the system enter QG state again, but compressible

$\beta = 8, L = 16$

At $\Lambda = 60$

![Graphs showing phase transitions and various parameters](image-url)
Incompressible and Compressible QG state in 1D

Take $U/t = 8$ as an example, $\Delta M/2 \approx 1.5$
Introduction

QMC simulations of incompressible QG in 2D

Theory: a percolation scenario

Compressible and incompressible QG

Summary and discussions
Based on plausible arguments and unbiased QMC results: there is an incompressible QG phase at $T = 0$ for commensurate filling and moderate disorder strength.
Conclusions and discussion

- Based on plausible arguments and unbiased QMC results: there is an incompressible QG phase at $T = 0$ for commensurate filling and moderate disorder strength.

- Mechanism: finite-size gap of finite SF domains surrounded by an MI. The gap decreases with increasing size of the SF domain, but as long as the SF do NOT percolate, lead to incompressibility in $T = 0$.
Conclusions and discussion

- Based on plausible arguments and unbiased QMC results: there is an incompressible QG phase at $T = 0$ for commensurate filling and moderate disorder strength.

- Mechanism: finite-size gap of finite SF domains surrounded by an MI. The gap decreases with increasing size of the SF domain, but as long as the SF do NOT percolate, lead to incompressibility in $T = 0$.

- The factor $1/N$ in κ: number of particles can be added, but may NOT enough to offer a Nonzero κ at $T \to 0$.
Conclusions and discussion

- For extremely large disorder strength, the percolation scenario doesn’t apply.
- Our QMC for $\rho = 1$.
 Commensurate fillings might be special in 2D
 There is an emergent particle-hole symmetry at integer ρ

- The percolation picture may does not apply at noninteger fillings.
 A compressible BG might exist at noninteger filling.

Weak-disorder RG: 2D integer filling have a different fixed point.
Krüger, PRB 2011
Others: no distinction
Fisher PRB 89, Pollet PRL 09
Thank You!
The emergent particle-hole symmetry at integer \(\rho \) and makes these systems special.

Blue: histograms of \(\langle n_i \rangle \) in \(l \times l \) box; Red: histograms obtained by randomly averaging \(l \times l \langle n_i \rangle \) (\(\beta = 8 \), 500 realizations.)
Even lower temperature